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Particular results of an unconventional approach to the geometry of multiple

diffraction are presented. The scalar relations between polarization components

of three waves in the symmetrical case, i.e. when the triplet of diffraction vectors

forms an isosceles triangle, are considered. The polarization factors are given in

simple trigonometric form as functions of the Bragg angle of principal re¯ection

and of a crystallographic parameter, which unambiguously describes such a

three-wave con®guration.

1. Introduction

The calculation of diffracted intensities in the case of simultaneous

diffraction on more than one set of crystallographic planes is based

on computational simulations. The algorithms of such simulations,

derived from the algorithm of Colella (1974), are highly complex and

formalized, and analytical investigations deal mostly with the inter-

relations between ®nal and interim (such as dispersion surface)

results of the calculations. The polarization factors, which describe

geometrical correlations between different vector components of

interacting electrical ®elds inside the crystal, are one sort of param-

eter integrated in a system of fundamental equations of multiple

diffraction. Although the importance of an analytical representation

of polarization factors has been known for a long time (Saccocio &

Zajac, 1965a,b), there still exists a paradoxical situation where one

can provide a wonderful representation of computational calculation

results but with quite a shaky analysis of their dependence on the

polarization state of the radiation and the geometry of the experi-

ment. As follows from recent discussions on the possibility and the

conditions for inversion of the asymmetry of three-wave interference

pro®les (Juretschke, 1986; Weckert & HuÈ mmer, 1997; Stetsko &

Chang, 1999), there is a lack of an analytical description of polar-

ization factors. Although the corresponding vector equations are well

known (Stetsko et al., 2004), they are more likely to be a compact

formulation of the problem than its solution.

During studies on an unconventional approach to the geometry of

multiple diffraction, the author has obtained, as a side result, simple

analytical expressions for polarization factors in the symmetrical case.

In the general case, the choice of unit polarization vectors is ques-

tionable.

2. Unit polarization vectors and results

Consider an optional three-wave re¯ection (hkl ÿ hikili=h�i k�i l�i ) with

diffraction vector H = H(hkl) of principal two-wave re¯ection and

diffraction vectors Hi = Hi(hikili) of additional and H�i = H�i �h�i k�i l�i � =

H�i �hÿ hi; kÿ ki; l ÿ li� = H ÿ Hi of coupling re¯ections, such that

jHij = jH�i j as shown in Fig. 1(a). The principle of the choice of unit

polarization vectors adopted in this communication is illustrated in

Fig. 1(b), where an optional circle (circle of con®guration) with its

center Li circumscribes one of two possible triplets of reciprocal-

lattice points 0;H;Hi or 0;H;H 0i . These triplets form two triple

con®gurations, Ci
3 and Ci0

3 , from a partial set of triple con®gurations

C3 with jHij = jH�i j.
Note at this point that, when the points Hi and H 0i belong to the

same circle of con®guration, there are at least two more points of the

reciprocal lattice on the same circle and in this case six-wave intrinsic

multiple diffraction takes place (Burbank, 1965; see also Chang,

1984). Another, at least four-wave, case of intrinsic multiple diffrac-

tion, being beyond the scope of this paper as the previous one, takes

place when the vectors Hi and H�i are perpendicular.

Let us suppose that Ci
3 (or Ci0

3 ) is realized in its borderline, the

coplanar case (see Chang, 1984; Kshevetskii et al., 1985). In such a

case, all reciprocal-lattice points 0, H and Hi, diffraction vectors H, Hi

and H�i , and wavevectors K0, K and Ki lie in a principal section of the

Ewald sphere. The radius of the sphere is Rcopl = �ÿ1
3i;max, where �3i;max

is the maximal wavelength of diffracted radiation inside the crystal,

the center Lo of the sphere coincides with the center Li of the circle

of con®guration, and the angle ��i = �max is the maximal Bragg angle

for principal re¯ection (hkl), when the exact geometrical conditions

of three-wave diffraction can still be satis®ed. In the case under

consideration the conventional choice of unit polarization vectors for

two-wave diffraction can be adopted: all r vectors lie normal to and

all p vectors lie in the common diffraction plane and each triplet of

the K, r and p vectors forms a right-handed orthogonal axes system,

as shown in Fig. 1(b). The transition to the general case of symmetric

three-wave diffraction with R>Rcopl means shifting of the Ewald

sphere center Lo to the right or to the left, along the axis L; the value

Figure 1
Choice of unit polarization vectors r and p for symmetrical three-wave
con®guration in (a) the general and (b) the coplanar case
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of the Bragg angle � decreases, the lengths of all three K vectors

increase and they incline with respect to one another together with

the corresponding unit polarization vectors r and p.

Let us dispose of the uncertainty in the directions of vectors r and

p by means of the following rule: all r vectors lie normal to diffraction

vector H and all p vectors lie parallel to the diffraction plane of

principal re¯ection, formed by the wavevector K0 of the transmitted

wave and the wavevector K of the diffracted one. In this way, we

obtain a system of unit polarization vectors, clearly associated with

the azimuthal scan (Renninger, 1937) and the reference-beam

diffraction (Shen, 1998) techniques, which means the realization of

large numbers of multiple re¯ections without any change of incident-

radiation polarization state.

As mentioned earlier, the side result of an unconventional

approach to the geometry of multiple diffraction is presented here.

Let us consider the principle of this approach. The angular value ��i
was introduced above as the maximal Bragg angle of the principal

re¯ection (hkl) when the reciprocal-lattice points of the ith con-

®guration Ci
3 lie on the Ewald sphere. This value is also an invariant

scalar characteristic of the con®guration under consideration. It is

really the acute angle between the crystallographic planes that

corresponds to the diffraction vectors Hi and H�i and can be easily

calculated as such if all the lattice constants and crystallographic

indices hikili and h�i k�i l�i are commonly known. Alternatively, the

speci®ed angle can be calculated from the angular positions of

corresponding multiple diffraction peaks on the azimuthal scan plot.

Taking into account the possibility of distinguishing the cases Ci
3

and Ci0
3 in Fig. 1(b), we shall use the angular value �i, which is the

angle between the outer surfaces of the planes, i.e. �i = ��i for the Ci
3

case and �i = �ÿ��i for the Ci0
3 case.

Now, following Saccocio & Zajac (1965b) and Joko & Fukuhara

(1967) (see also Chang, 1984), i.e. leaving out lengthy trivial trig-

onometric transformations, we can represent the ®nal results as

follows,


1 � p0p � cos 2�; �1�

2 � p0pi � pip � ÿsign�cos �i� cos �; �2�


3 � r0ri � rir � sign�cos �i�
cos �i ÿ cos2 �

cos ��1ÿ cos �i�
; �3�


4 � rip0 � ÿrip �
sin2 ��cos2 �ÿ cos2 �i�1=2

cos ��1ÿ cos �i�
; �4�


5 � r0p � rp0 � r0pi � rpi � 0

and


6 � r0r � 1:

This is different from the similar results given by Saccocio & Zajac

(1965b) for �i = �=3, in addition to the change of sign in (2) (because

of the insigni®cant difference in the choice of unit polarization

vectors). Here we see in (3) and (4) only the constant crystallographic

value �i and only a directly measured Bragg angle �. In the above-

mentioned work, 
3 and 
4 were represented as functions of � and a

variable, which functionally depends upon �, crystallographic par-

ameters and crystallographic indices and was simple to calculate in

some special cases only. For example, taking into account cos(�/3) =

0.5, one obtains immediately from (1)±(4) the simple relations

between polarization factors, given in this work.

In the particular case of cos �i = 0, which corresponds to the

exceptional case of four-wave intrinsic multiple diffraction, one

obtains 
3 = � cos � and 
4 = sin2 �, which coincides, taking into

account the difference in terms r and p, with the result given by Joko

& Fukuhara (1967).

Let us consider now the last veri®cation example. As can be seen

from 
3 = 0 in (3), the total suppression of the r-polarized component

of diffracted radiation with wavevector Ki takes place for r-polarized

incident radiation under condition �i = cos2� and, consequently,

when 
4 reaches its extreme value, for ®xed angle �, |
4| = sin�. In

this three-wave case, there should not arise any effect on the two-

wave intensity for �-polarized incident radiation. An example of such

a case is the Ge�220ÿ 115=115� re¯ection with �i = 31.59� and � =

22.65� for Cu K� radiation, and the results of computations, repre-

sented by Stetsko & Chang (1999) for this re¯ection, are in perfect

agreement with our conclusion.

Thus, one can use our results for solving more complex tasks. One

of these tasks, which at the moment does not have an analytical

solution in spite of intensive discussion, is the problem of the possi-

bility and conditions of the appearance of inverse three-wave peaks

asymmetry (see Introduction). Omitting the redundant consideration

of its essentials, which was given by Juretschke (1986), Shen (1986),

Weckert & HuÈ mmer (1997), Stetsko & Chang (1999) and Stetsko et

al. (2004), let us consider only the shortest ®nal formulation of the

problem: an analytical description must be obtained of conditions

that correspond to the equality sign�P�dir� = ÿsign�P�um�, where P�dir =


1 and P�um = 
2
2 ÿ 
2

4 .

Note that, on the poles of the Ewald sphere (points Hi and H 0i in

Fig. 1b), �i = �, �0i = � ÿ � and P�um = cos2 � > 0, but at the

equatorial points, where cos �i = cos2 � is ful®lled (see above), we

obtain P�um = cos 2�, i.e. the signs of P�dir and P�um can differ at least for

� > �/4.

Further, using (2) and (4) for P�um = 0, we obtain an equation for the

points, in which P�um changes its sign,

�tan4 �� 1� cos2 �i ÿ 2 cos �i ÿ �tan4 � cos2 �ÿ 1� � 0;

and easily ®nd the solution of the problem as

����i � arccosf�1� tan3 ��ÿ cos 2��1=2�=�1� tan4 ��g: �5�

Thus, in conclusion, for �-polarized incident radiation the azimuthal

scan peaks, which correspond to a triplet con®guration from a partial

set of symmetrical triplet con®gurations C3, have inverse asymmetry

if and only if the following conditions are valid: � > �/4 and either

�i <����i or �i >��ÿ�i , where ����i are the solutions of equation (5).
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